

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

к выполнению практических работ

при изучении учебной дисциплины

ОП.03 Электротехника и электроника

для специальности

20.02.04 Пожарная безопасность

Практическая работа — небольшой научный отчет, обобщающий проведенную учащимся работу, которую представляют для защиты преподавателю.

В процессе практического занятия учащиеся выполняют одну или несколько практических работ (заданий) под руководством преподавателя в соответствии с изучаемым содержанием учебного материала.

дидактической Ведущей целью практических занятий является формирование практических умений - профессиональных (умений выполнять действия, операции, необходимые последующем определенные профессиональной деятельности) или учебных (умений решать задачи по физике, химии, информатике др.), математике, необходимых последующей учебной деятельности ПО общепрофессиональным И практические специальным дисциплинам; занятия занимают общепрофессиональных изучении преимущественное место при специальных дисциплин. Состав и содержание практических направлены на реализацию Государственных требований.

На практических занятиях учащиеся овладевают первоначальными профессиональными умениями и навыками, которые в дальнейшем закрепляются и совершенствуются в процессе курсового проектирования и производственной (преддипломной) практики.

Наряду с формированием умений и навыков в процессе практических занятий обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения.

К практическим работам предъявляется ряд требований, основным из которых является полное, исчерпывающее описание всей проделанной работы, позволяющее судить о полученных результатах, степени выполнения заданий и профессиональной подготовке учащихся.

Практические работы:

Практическая работа № 1

Тема: Расчет характеристик электрического поля. Закон Кулона.

объем часов: 2 часа

Цели:

1. Закрепление теоретических знаний по теме;

- 2. Формирование практических навыков расчета основных характеристик электрического поля;
- 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:

- 1. Характеристики электрического поля;
- 2. Основные расчетные формулы характеристик электрического поля и их единицы измерения.

Студент должен уметь:

Рассчитывать основные характеристики электрического поля. Исспользовать в расчетах закон Кулона.

Методические указания по ходу выполнения работы

Формула закона Кулона:
$$F = \frac{Q \cdot q}{R^2 \cdot 4\pi \cdot \varepsilon_0 \cdot \varepsilon_r}$$

Формула напряженности электрического поля:

$$E = \frac{F}{q} = \frac{Q}{R^2 \cdot 4\pi \cdot \varepsilon_0 \cdot \varepsilon_r}$$

Формула потенциала электрического поля:

$$\varphi = \frac{A}{q} = \frac{Q}{R \cdot 4\pi \cdot \varepsilon_0 \cdot \varepsilon_r}$$

Расчетные задания:

- **1.** Определить силу взаимодействия двух зарядов 3,5·10⁻⁷Кл и $6 \cdot 10^{-7}$ Кл, находящихся на расстоянии 5 см друг от друга в воде. Как изменится эта сила, если воду заменить трансформаторным маслом?
- **2.** Определить расстояние между зарядами $1,6 \cdot 10^{-6}$ Кл и $8 \cdot 10^{-5}$ Кл, которые помещены в керосин и отталкиваются с силой 3,2Н.

3

3. На расстоянии 1,5см от заряда, находящегося в воздухе, напряженность поля 650кВ/м. Определите этот заряд.

- **4.** Напряженность электрического поля $5 \cdot 10^{-2}$ В/м. Определить силу, с которой поле действует на заряд 1,6 $\cdot 10^{-3}$ Кл, и работу по перемещению этого заряда в точку поля с потенциалом 45В.
- **5.** Два разноименных заряда 5 ·10⁻⁶Кл и 2,8·10⁻⁶Кл находятся в воде на расстоянии 0,5м. Определить напряженность посередине между ними.

Контрольные вопросы:

- 1. Сформулировать закон Кулона.
- 2. Записать значение электрической постоянной.
- 3. Дать понятие напряженности электрического поля, указать ее единицы измерения.
- 4. Дать понятие потенциал электрического поля, указать его единицы измерения.
- 5. Дать понятие напряжения, указать единицы измерения.

Список литературы:

- 1. Миленина, С. А. Электротехника: учебник и практикум для СПО / С. А. Миленина; под ред. Н. К. Миленина. М.: Издательство Юрайт, 2017. 262 с. https://www.biblio-online.ru
- 2. Миленина, С. А. Электроника и схемотехника : учебник и практикум для СПО / С. А. Миленина ; под ред. Н. К. Миленина. М. : Издательство Юрайт, 2017. 208 с. https://www.biblio-online.ru

Практическая работа № 2

Тема: Расчет электрической емкости и энергии электрического поля

объем часов: 2 часа

Цели:

- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета параметров конденсаторов и энергии электрического поля;
- 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:

- 1. Назначение и основной параметр конденсаторов;
- 2. Основные расчетные формулы нахождения общей емкости при смешанном соединении конденсаторов.
- 3. Формулу расчета энергии электрического поля.

Студент должен уметь:

Рассчитывать основные параметры конденсаторов и сворачивать схемы со смешанным соединением, рассчитывать энергию поля.

Методические указания по ходу выполнения работы

1. Электрическая емкость конденсатора:

$$C = \frac{Q}{U}(\Phi)$$

$$C = \frac{Q}{U}(\Phi) \qquad C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot S}{d}$$

2. Емкость параллельного соединения конденсаторов: $C_{oбщ} = C_1 + C_2$

$$C_{o \delta u \mu} = C_1 + C_2$$

3. Емкость последовательного соединения конденсаторов:

$$C_{o \delta u i} = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

4. Энергия электрического поля:

$$W_{\scriptscriptstyle 9.7} = \frac{C \cdot U^2}{2} (\mathcal{A} \times c)$$

Расчетные задания:

- 1. Определить емкость конденсатора, если он был заряжен до напряжения 250B, при этом заряд составил $2 \cdot 10^{-4}$ Кл.
- 2. Конденсатор заряжен от источника 100В. Энергия поля конденсатора $6 \cdot 10^{-3}$ Дж. Определить его емкость.
- 3. Определить емкость плоского воздушного конденсатора, имеющего площадь пластин 20см², расстояние между ними 0,8см.
- 4. Три конденсатора емкостями 47пФ, 18пФ и 75пФ соединены параллельно и к ним параллельно подключен конденсатор в 75 пФ, найти общую емкость соединения.
- 5. Общая емкость двух последовательно включенных конденсаторов 1,2мкФ. Емкость одного из них 3мкФ, найти емкость другого.

Контрольные вопросы:

- 1. Дать понятие электрической емкости, указав единицы измерения.
- 2. Что такое конденсатор, для чего его используют в электрических пепях?
- 3. Как на схеме обозначается конденсатор?
- 4. Записать формулы последовательного и параллельного соединения конденсаторов и энергии электрического поля.

Список литературы:

- 1. Миленина, С. А. Электротехника: учебник и практикум для СПО / С. А. Миленина; под ред. Н. К. Миленина. — М.: Издательство Юрайт, 2017. — 262 c. https://www.biblio-online.ru
- 2. Миленина, С. А. Электроника и схемотехника: учебник и практикум для СПО / С. А. Миленина; под ред. Н. К. Миленина. — М.: Издательство Юрайт, 2017. — 208 с. https://www.biblio-online.ru

Тема: Расчет цепи постоянного тока со смешанным соединением резисторов

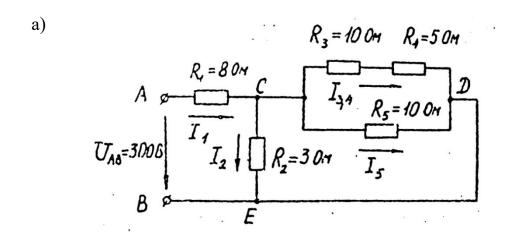
объем часов: 2 часа

Цели:

- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета параметров цепей постоянного тока;
 - 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:

- 1. Основные параметры цепей постоянного тока.
- 2. Законы цепей постоянного тока.
- 3. Основные расчетные формулы для нахождения общего сопротивления при смешанном соединении резисторов.


Студент должен уметь:

- 1. Рассчитывать основные параметры цепей постоянного тока.
- 2. Сворачивать схемы со смешанным соединением резисторов.
- 3. Использовать в расчете закон Ома и законы Кирхгофа.

Методические указания по ходу выполнения работы

Решение задач этой группы требует знание законов Ома, для всей цепи и ее участков, первого и второго законов Кирхгофа, методики определения эквивалентного сопротивления цепи при смешанном соединении резисторов, а также умения вычислять мощность и работу электрического тока.

Для схемы заданной на рисунке №1а, определить эквивалентное сопротивление цепи R_{AB} и токи в каждом резисторе, а также расход электрической энергии цепью за 8 часов работы.

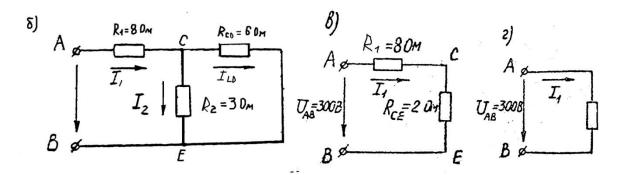


Рис. 1

Решение:

Задача относится к теме «Электрические цепи постоянного тока». Проводим поэтапное решение, предварительно обозначив стрелкой ток в каждом резисторе, индекс тока должен соответствовать номеру резистора, по которому он проходит.

1) Определяем общее сопротивление разветвления CD, учитывая, что резисторы R_3 и R_4 соединены между собой последовательно, с резистором R_5 — параллельно (рис. 41, б):

$$R_{CD} = \frac{(R_3 + R_4) * R_5}{R_3 + R_4 + R_5} = \frac{(10 + 5) * 10}{10 + 5 + 10} = 6 \text{ Om}$$

2) Определяем общее сопротивление цепи относительно зажимов СЕ (рис. 41, в).

Так как резистор R_{CD} и R_2 включены параллельно, то:

$$R_{CE} = \frac{R_{CD} * R_2}{R_{CD} + R_2} = \frac{6 * 3}{6 + 3} = 2 \text{ Om}$$

3) Находим эквивалентное сопротивление всей цепи R_{AB} (рис. 1, г):

$$R_{AB} = R_1 + R_{CE} = 8 + 2 = 10 \text{ Om}$$

4) Определяем ток в сопротивлениях цепи. Так как напряжение $U_{\rm AB}$ приложено ко всей цепи, а $R_{\rm AB}=10$ Ом то, согласно закону Ома:

$$I_1 = \frac{U_{AB}}{R_{AB}} = \frac{300}{10} = 30 \text{ A}$$

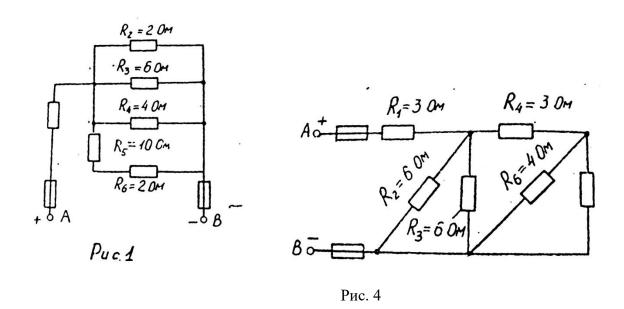
5) Расход энергии цепью за 8 часов работы:

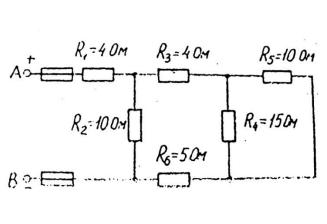
$$W = Pt = U_{AB} * I_1 * t = 300 * 30 * 8 = 72000 \ BT * \Psi = 72 \ кBT * \Psi$$

Расчетные задания по вариантам:

Для цепи постоянного тока со смешанным соединением резисторов определить:

- 1) Эквивалентное сопротивление цепи относительно зажимов АВ;
- 2) Ток в каждом резисторе;
- 3) Напряжение на каждом резисторе;
- 4) Мощность, потребляемую всей цепью;
- 5) Расход электрической энергии цепи за 8 часов работы


Номер рисунка и данные одного из заданных токов или напряжений приведены в таблице №1.


Индекс тока или напряжение совпадает с индексом резистора, по которому проходит этот ток или на котором действует указанное напряжение.

Например, через резистор R_3 проходит ток I_3 и на нем действует напряжение U_3 .

Таблица №1

Номер	1	2	3	4	5	6	7	8	9	10
варианта										
Номер рисунка	1	2	3	4	5	6	7	8	9	10
Задаваемая	I_1	I_2	U_2	U_5	I_5	U_1	I_6	I_4	I_3	U_2
величина	= I2A	= I5A	= 30B	= 24B	= 10A	= 10.8B	= 4.8A	= 12A	= 5A	= 24B

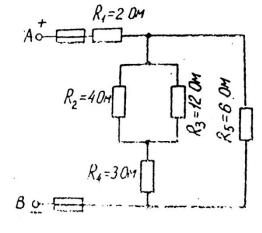
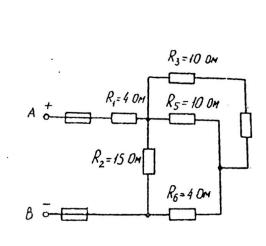



Рис. 2

рис. 5

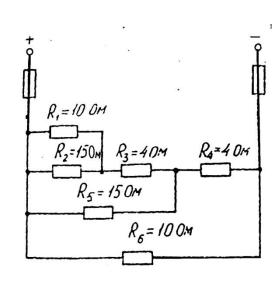
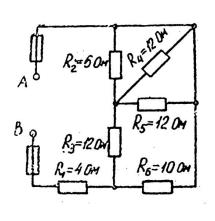



Рис. 3

рис. 6

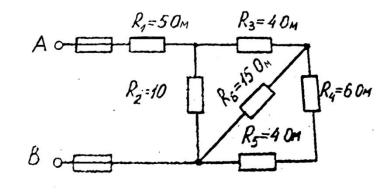


Рис. 7

рис. 9

Тема: Расчет цепи переменного тока с последовательным соединением элементов

объем часов: 2 часа

Цели:

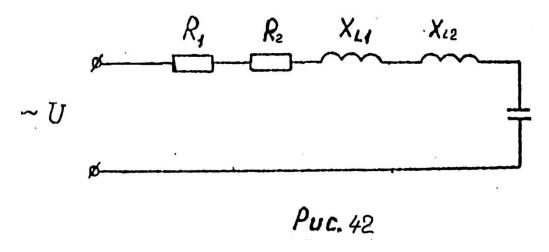
- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета параметров однофазных неразветвленных цепей переменного тока;
 - 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:

- 1. Основные расчетные формулы для определения параметров однофазных цепей переменного тока.
 - 2. Правила построения диаграмм.

Студент должен уметь:

1. Рассчитывать основные параметры однофазной неразветвленной цепи переменного тока и строить диаграмму напряжений.


Методические указания по ходу выполнения работы:

В неразветвленной цепи переменного тока $R_1=2~{\rm Om}, \quad R_2=4~{\rm Om}, \quad X_{L1}=4~{\rm Om}, \quad X_{L2}=6~{\rm Om}, \quad X_{C1}=2~{\rm Om}$

Подведенное напряжение U=40 В

Определить: полное сопротивление Z, ток I, коэффициент мощности $\cos \varphi$, активную P, реактивную Q и полную S мощности.

Построить в масштабе векторную диаграмму.

Решение:

1) Полное сопротивление цепи определяется по формуле:

$$Z = \sqrt{R^2 + X^2}$$

Где: $R = R_1 + R_2 = 2 + 4 = 6$ Ом - суммарное активное сопротивление цепи.

 $X = X_{L1} + X_{L2} - X_{C1} = 4 + 6 - 2 = 8$ Ом - сумма индуктивных и емкостных сопротивлений.

Тогда:

$$Z = \sqrt{6^2 + 8^2} = 10 \text{ Om}$$

2) По закону Ома для цепи переменного тока находим ток цепи:

$$I = \frac{U}{Z} = \frac{40}{10} = 4 \text{ A}$$

3) Коэффициент мощности соѕ ф:

$$\cos \varphi = \frac{R}{Z} = \frac{6}{10} = 0.6$$

$$\sin \varphi = \frac{X}{Z} = \frac{8}{10} = 0.8$$

4) Определить полную мощность:

$$S = U * I = 40 * 4 = 160 B * A$$

5) Активная мощность:

$$P = U * I * \cos \varphi = 40 * 4 * 0.6 = 96 BT$$

6) Реактивная мощность:

$$Q = U * I * \sin \varphi = 40 * 4 * 0.8 = 128$$
 Bap

Для построения векторной диаграммы определим падение напряжениях и сопротивлениях:

$$U_{R1} = I * R_1 = 4 * 2 = 8 \text{ B}$$
 $U_{R2} = I * R_2 = 4 * 4 = 16 \text{ B}$
 $U_{XL1} = I * X_{L1} = 4 * 4 = 16 \text{ B}$
 $U_{XL2} = I * X_{L2} = 4 * 6 = 24 \text{ B}$
 $U_{XC1} = I * X_{C1} = 4 * 2 = 8 \text{ B}$

Для рассматриваемого примера задаемся масштабом: По току:

$$m_I = 1 \text{ A/cm}$$

По напряжению:

$$m_U = 4 \text{ B/cm}$$

Тогда длина вектора тока:

$$\ell = \frac{I}{m_I} = \frac{4}{1} = 4 \text{ cm}$$

Длина векторов напряжений:

$$\ell_{U_{R1}} = \frac{U_{R1}}{m_U} = \frac{8}{4} = 2 \text{ cm}$$

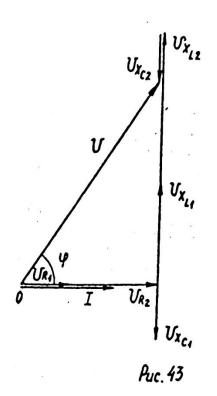
$$\ell_{U_{R2}} = \frac{U_{R2}}{m_U} = \frac{16}{4} = 4 \text{ cm}$$

$$\ell_{U_{XL1}} = \frac{U_{XL1}}{m_U} = \frac{16}{4} = 4 \text{ cm}$$

$$\ell_{U_{XL2}} = \frac{U_{XL2}}{m_U} = \frac{24}{4} = 6 \text{ cm}$$

$$\ell_{U_{XC1}} = \frac{U_{XC1}}{m_U} = \frac{8}{4} = 2 \text{ cm}$$

Поскольку ток является одинаковой величиной для всех сопротивлений, диаграмму относительно вектора тока.


- 1) Горизонтально в масштабе откладываем вектор тока.
- 2) Вдоль вектора тока откладываем векторы U_{R1} и U_{R2}
- 3) Под углом 90° откладываем векторы напряжения U_{XL1} и U_{XL2} в сторону опережения вектора тока (вверх), т.к. положительное вращение векторов принято против часовой стрелки.
- 4) Под углом 90° к вектору тока откладываем вниз вектор напряжения на емкостном сопротивлении.
- 5) Векторы U_{R1} , U_{R2} , U_{XL1} , U_{XL2} , U_{XC1} , определяем по правилу сложения векторов в результате получаем вектор приложенного напряжения

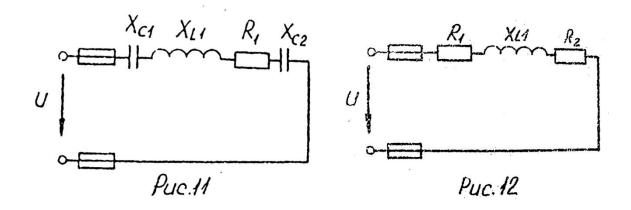
$$\overrightarrow{U} = \overrightarrow{U_{R1}} + \overrightarrow{U_{R2}} + \overrightarrow{U_{XL1}} + \overrightarrow{U_{XL2}} + \overrightarrow{U_{XC1}}$$

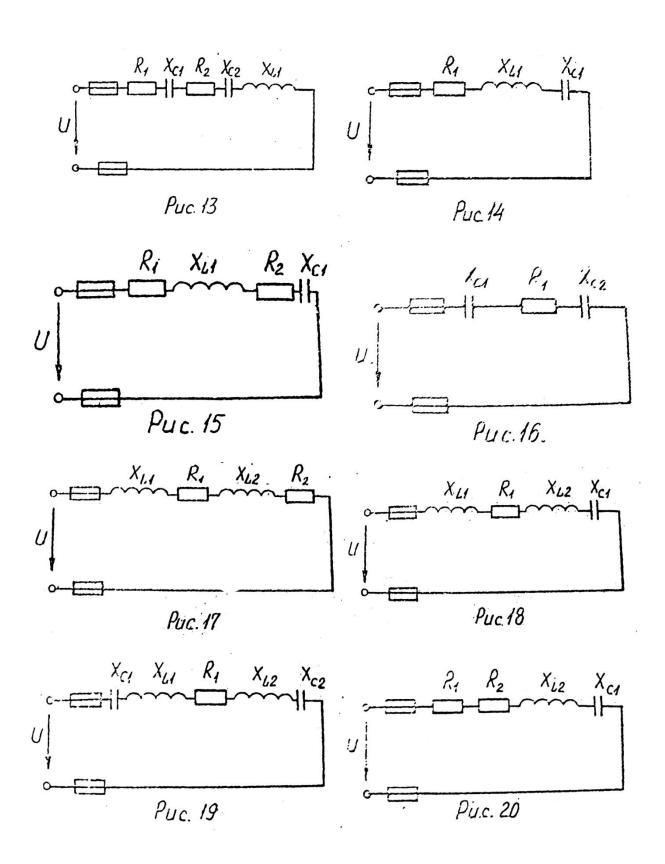
Угол ϕ между векторами общего напряжения \vec{U} и тока I называется углом сдвига фаз между током и напряжением.

По виду векторной диаграммы необходимо научиться определять характер нагрузки.

В нашем случае напряжение опережает ток: нагрузка имеет активно – индуктивный характер.

Задания по вариантам:


Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), включенные последовательно. Схема цепи приведена на соответвующем рисунке. Номер рисунка и значения сопротивлений всех элементов, а также один дополнительные параметр заданы в таблице $\mathbb{N}2$.


Начертить схему цепи и определить следующие величины:

- 1) Полное сопротивление цепи Z;
- 2) Напряжение U, приложенное к цепи;
- 3) Ток I;
- 4) Угол сдвига фаз ф (по величине и знаку);
- 5) Активную P, реактивную Q и полную S мощности цепи. Начертить в масштабе векторную диаграмму цепи и пояснить ее построение.

Таблица №2

Номер	Номер	R_1 ,	R_2 ,	X_{L1} ,	X_{L2} ,	X_{c1} ,	X_{c2} ,	Дополнительный
варианта	рисунка	Ом	Ом	Ом	Ом	Ом	Ом	параметр
1	11	12	-	4	1	12	8	I = 4A
2	12	6	2	6	1	ı	-	$P_{R1} = 150 \text{BT}$
3	13	3	1	5	1	6	2	S = 180 BA
4	14	4	-	6	ı	3	-	$Q_{L1} = 150$ вар
5	15	4	2	12	1	4	-	P=24B _T
6	16	16	-	-	1	4	8	Q = -300вар
7	17	4	8	10	6	ı	-	Q = 64 вар
8	18	3	-	10	12	26	-	$P_1 = 48 \text{BT}$
9	19	40	-	30	20	12	8	S = 800 BA
10	20	4	4,0	-	2,0	8	-	I = 2 A

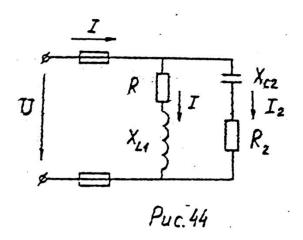
Тема: Расчет цепи переменного тока с параллельным соединением элементов

объем часов: 2 часа

Цели:

- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета параметров однофазных разветвленных цепей переменного тока;
 - 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:


- 1. Основные расчетные формулы для определения параметров однофазных разветвленных цепей переменного тока.
 - 2. Правила построения диаграмм.

Студент должен уметь:

1. Рассчитывать основные параметры однофазной неразветвленной цепи переменного тока и строить диаграмму напряжений.

Методические указания по ходу выполнения работы:

Катушка с активным сопротивление R_1 =4 Ом и индуктивным X_{L1} = 3 Ом соединена параллельно с конденсатором, емкостное сопротивление которого X_{C2} = 8 Ом и активным сопротивление R_2 = 6 Ом. К цепи приложено напряжение U= 60 В. Определить: 1. Токи в ветвях и в неразветвленной части цепи; 2. Активные и реактивные мощности каждой ветви и всей цепи; 3. Полную мощность всей цепи; 4. Углы сдвига фаз между током и напряжением в каждой ветви и во всей цепи. Начертить в масштабе векторную диаграмму.

Решение:

1) Определить ток в ветвях:

$$I_1 = \frac{U}{Z_1} = \frac{U}{\sqrt{R_1^2 + X_L^2}} = \frac{60}{\sqrt{4^2 + 3^2}} = \frac{60}{5} = 12 A$$

$$I_2 = \frac{U}{Z_2} = \frac{U}{\sqrt{R_2^2 + X_{C2}^2}} = \frac{60}{\sqrt{6^2 + 8^2}} = 6 A$$

2) Углы сдвига фаз в ветвях:

$$\sin \varphi = \frac{X_{L1}}{Z_1} = \frac{X_{L1}}{\sqrt{R_1^2 + X_L^2}} = \frac{3}{\sqrt{4^2 + 3^2}} = \frac{3}{5} = 0.6$$

По таблицам Брадиса находим $\varphi_1 = 36^{\circ}50'$, т. к. $\varphi_1 > 0$, то напряжение опережает ток:

$$\sin \varphi = \frac{X_{C2}}{Z_2} = \frac{X_{C2}}{\sqrt{R_2^2 + X_{C2}^2}} = \frac{8}{\sqrt{6^2 + 8^2}} = -0.8; \, \varphi_2 = -53^{\circ}10',$$

т. е. напряжение отстает от тока, т. к. $\phi_2 < 0$

По таблицам Брадиса находим:

$$\cos \varphi_1 = \cos * 36°50' = 0.8$$

 $\cos \varphi_2 = \cos * (-53°10') = -0.6$

3) Определяем активные и реактивные составляющие токов в ветвях:

$$I_{a1} = I_1 * \cos \varphi_1 = 12 * 0.8 = 9.6 A$$

 $I_{a2} = I_2 * \cos \varphi_2 = 6 * (-0.6) = -3.6 A$
 $I_{p1} = I_1 * \sin \varphi_1 = 12 * 0.6 = 7.2 A$
 $I_{p2} = I_2 * \sin \varphi_2 = 6 * (-0.8) = -4.8 A$

4) Определяем ток в неразветвленной части цепи:

$$I = \sqrt{(I_{a1} + I_{a2})^2 + (I_{p1} + I_{p2})^2} = \sqrt{(9.6 + 3.6)^2 + (7.2 - 4.8)^2}$$

= 13.4 A

5) Определяем коэффициент мощности всей цепи:

$$\cos \varphi = \frac{I_{a1} + I_{a2}}{I} = \frac{9.6 + 3.6}{13.4} = \frac{13.2}{13.4} = 0.98$$

б) Определяем активные и реактивные мощности ветвей и всей цепи:

$$P_1 = U * I_1 * \cos \varphi_1 = 60 * 12 * 0.8 = 576 \text{ BT}$$

 $P_2 = U * I_2 * \cos \varphi_2 = 60 * 6 * 0.6 = 216 \text{ BT}$
 $P = P_1 + P_2 = 576 + 216 = 792 \text{ BT}$

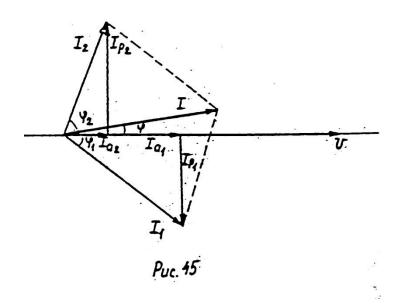
$$Q_1 = U*I_1*\sin \varphi_1 = 60*12*0,6 = 432$$
 вар
$$Q_2 = U*I_2*\sin \varphi_2 = 60*6*(-0.8) = -288$$
 вар

$$Q = Q_1 + Q_2 = 432 + (-288) = 144$$
 Bap

7) Определяем полную мощность всей цепи:

$$S = \sqrt{P^2 + Q^2} = \sqrt{792^2 + 144^2} = 805 \text{ BA}$$

Ток в неразветвленной части цепи можно определить и таким образом:


$$I = \frac{S}{U} = \frac{805}{60} 13,4 \text{ A}$$

8) Для построения векторной диаграммы задаемся масштабом по току и напряжению:

$$1 \text{ cm} - 2 \text{ A}$$

 $1 \text{ cm} - 5 \text{ B}$

Построение начинаем с вектора напряжения U.

Под углом φ_1 к нему (в сторону отставания) откладываем в масштабе вектор тока I_1 , под углом φ_2 (в сторону опережения) — вектор тока - I_2 . Геометрическая сумма этих токов равна току в неразветвленной цепи.

Задания по вариантам:

Разветвленная цепь переменного тока состоит из двух параллельных ветвей содержащих различные элементы (резисторы, индуктивности, емкости). Номер рисунка, значения всех сопротивлений, а также один дополнительный параметр заданы в таблице №3. Индекс «1» у дополнительного параметра означает, что он относится к первой ветви: и индекс «2» - ко второй. Начертить схему цепи и определить следующие величины:

- 1) Полные сопротивления Z_1, Z_2 в обеих ветвях;
- 2) Токи I_1 и I_2 в обеих ветвях;
- 3) Ток І в неразветвленной части цепи;
- 4) Напряжение U, приложенное к цепи;
- 5) Активную P, реактивную Q и полную S мощности всей цепи. Начертить в масштабе векторную диаграмму цепи.

Таблица №3

$\mathcal{N}_{\underline{0}}$	$\mathcal{N}_{\underline{0}}$	R_1 ,	R_2 ,	X_{L1} ,	X_{L2} ,	X_{C1} ,	X_{C2} ,	Дополнительный
варианта	рисунка	Ом	Ом	Ом	Ом	Ом	Ом	параметр
1	21	2	3	-	-	-	4	$I_1 = 5A$
2	22	20	32	-	30	-	6	$P_2 = 128 \text{BT}$
3	23	2	-	-	-	-	4	U = 8B
4	24	9	4	-	6	-	-	$I_1 = 10A$
5	25	28	-	64	-	-	60	$U_{R1} = 144B$
6	26	4	4	-	3	-	-	$I_2 = 8A$
7	27	16	32	12	24	-	-	$U_{L1} = 48B$
8	28	8	6	-	8	6	-	$Q_{C1} = -150$ вар
9	29	8	-	-	5	6	-	U = 50 B
10	30	12	32	-	30	16	6	$Q_{12} = 120$ вар

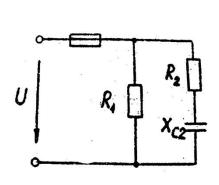


Рис. 21

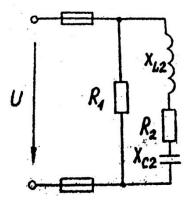


Рис. 22

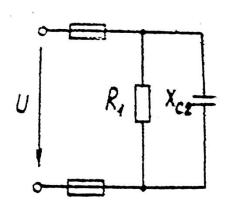


Рис. 23

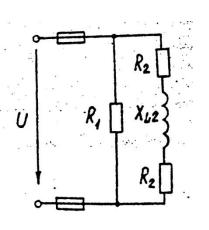
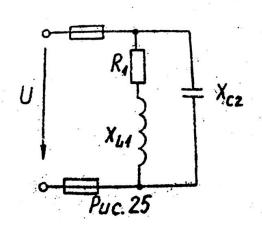
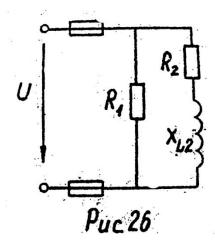
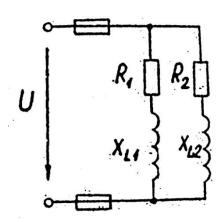





рис. 24

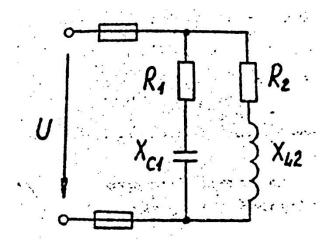
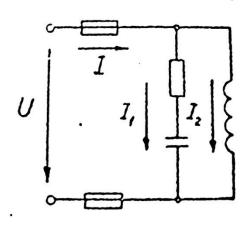



Рис. 27

Рис. 28

 $\begin{array}{c|c}
R_1 & R_2 \\
X_{C1} & X_{L2} \\
X_{C2} & X_{C2}
\end{array}$

Рис. 29

рис. 30

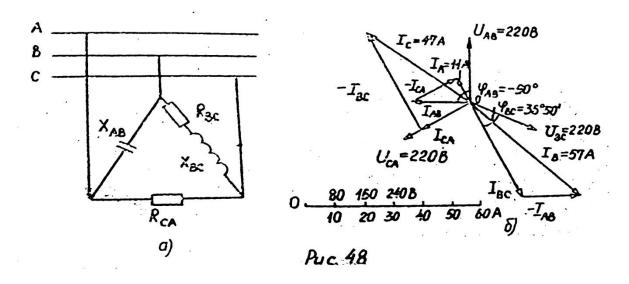
Тема: Расчет трехфазной электрической цепи при соединении нагрузки треугольником

объем часов: 2 часа

Цели:

- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета трехфазных цепей переменного тока при соединении по схеме треугольник;
 - 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:


- 1. Основные расчетные формулы для определения параметров трехфазных цепей переменного тока.
- 2. Правила построения векторной диаграммы и нахождение линейных токов по ней.

Студент должен уметь:

1. Рассчитывать основные параметры трехфазной цепи переменного тока при соединении треугольником и строить векторную диаграмму напряжений и токов

Методические указания по ходу выполнения работы:

В трехфазную сеть включили треугольником несимметричную нагрузку (рис. 48, а): в фазу AB — конденсатор с емкостным сопротивлением $X_{AB} = 10$ Ом; в фазу BC — катушку с активным сопротивлением $R_{BC} = 4$ Ом и индуктивным $X_{BC} = 3$ Ом; в фазу CA — активное сопротивление $R_{CA} = 10$ Ом. Линейное напряжение сети $U_{HOM} = 220$ В.

Определить фазные токи, углы сдвига фаз и начертить в масштабе векторную диаграмму цепи. По векторной диаграмме определить числовые значения токов.

Решение:

1) Определяем фазные токи и углы сдвига фаз:

$$I_{AB} = \frac{U_{HOM}}{X_{AB}} = \frac{220}{10} = 22 \text{ A}; \qquad \varphi_{AB} = -90^{\circ}$$

$$I_{BC} = \frac{U_{HOM}}{Z_{BC}} = \frac{220}{\sqrt{R_{BC}^2 + R_{BC}^2}} = \frac{220}{\sqrt{4^2 + 3^2}} = 44 \text{ A} \qquad \cos \varphi_{BC} = \frac{R_{BC}}{Z_{BC}} = \frac{4}{5}$$

$$= 0.8$$

Отсюда угол: $\varphi_{BC} = 36^{\circ}50'$

$$I_{\text{CA}} = \frac{U_{\text{HOM}}}{R_{\text{CA}}} = \frac{220}{10} = 22 \text{ A}$$
 $\varphi_{\text{CA}} = 0$

Для построения векторной диаграммы выбираем масштаб по току: 1см = 10A, а по напряжению: 1см=80B. Затем в принятом масштабе откладываем векторы фазных (линейных) напряжений U_{AB} , U_{BC} , U_{CA} под углом 120° относительно друг друга (рис. 48, б). Под углом $\varphi_{AB} = -90^\circ$ к вектору напряжения U_{AB} откладываем вектор тока I_{AB} ; в фазе BC вектор тока должен отставать от вектора напряжения U_{BC} на угол $\varphi_{BC} = 36^\circ 50'$, а в фазе CA вектор тока I_{CA} совпадает с вектором напряжения U_{CA} . Затем строим векторы линейных токов на основании известных уравнений: $I_A = I_{AB} - I_{CA} = I_{AB} + (-I_{CA})$; $I_B = I_{BC} + (-I_{AB})$; $I_C = I_{CA} + (-I_{BC})$

Измеряя длины векторов линейных токов и пользуясь принятым масштабом находим значения линейных токов: $I_A = 11 \text{ A}$; $I_B = 57 \text{ A}$; $I_C = 47 \text{ A}$

Задания по вариантам:

В трехфазную трехпроводную сеть с линейным напряжение $U_{\rm H}$ включены угольником разные по характеру сопротивления элементы. Определить фазные и линейные токи, активную P, реактивную Q и полную S мощности потребляемой всей цепью. Начертить векторную диаграмму цепи и по ней определить числовые значения линейных токов.

Таблица №4

№ варианта	№ рисунка	$U_{\scriptscriptstyle m H}$, B
1,6	36	380
2,7	37	220
3,8	38	380
4,9	39	220
5,10	40	220

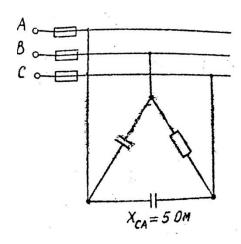


Рис. 36

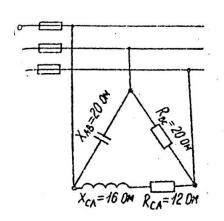


Рис. 38

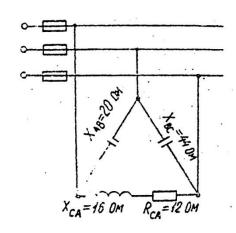


Рис.37

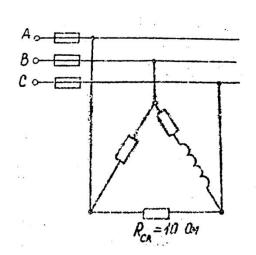


Рис. 39

Тема: Расчет трехфазной электрической цепи при соединении нагрузки звездой

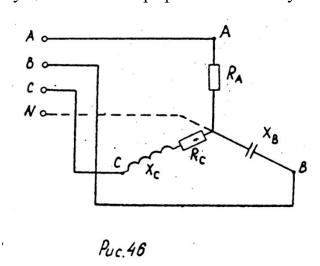
объем часов: 2 часа

Цели:

- 1. Закрепление теоретических знаний по теме;
- 2. Формирование практических навыков расчета трехфазных цепей переменного тока при соединении по схеме звезда;
 - 3. Формирование общих компетенций: ОК 2, ОК4.

Студент должен знать:

- 1. Основные расчетные формулы для определения параметров трехфазных цепей переменного тока.
- 2. Правила построения векторной диаграммы и нахождение линейных токов по ней.


Студент должен уметь:

1. Рассчитывать основные параметры трехфазной цепи переменного тока при соединении звездой и строить векторную диаграмму напряжений и токов

Методические указания по ходу выполнения работы:

В трехфазную четырехпроводную сеть включили звездой несимметричную нагрузку: в фазу A – активное сопротивление $R_{\rm A}=11$ Ом, в фазу B – емкостное сопротивление $X_{\rm B}{=}10$ Ом, в фазу C – активное сопротивление $R_{\rm C}=8$ Ом и индуктивное $X_{\rm C}=6$ Ом. Линейное напряжение сети $U_{\rm H}=380$ В.

Определить фазные токи, активную, реактивную и полную мощности, потребляемые цепью, значения фазных углов, начертить в масштабе векторную диаграмму цепи и найти графически ток в нулевом проводе.

Решение:

1) Определить фазные напряжения:

$$U_{\rm A} = U_{\rm B} = U_{\rm C} = \frac{U_{\rm H}}{\sqrt{3}} = \frac{380}{1.73} = 220 \text{ B}$$

2) Находим фазные токи:

$$I_A = \frac{U_A}{Z_A} = \frac{220}{11} = 20 A$$

Где: $Z_{\rm A} = \sqrt{R^2_{\rm A} + X^2_{\rm A}} = R_{\rm A}$.

$$I_{\rm B} = \frac{U_{\rm B}}{Z_{\rm B}} = \frac{220}{10} = 22 A$$

 Γ де: $Z_{\rm B} = X_{\rm B}$

$$I_{\rm C} = \frac{U_{\rm C}}{Z_{\rm C}} = \frac{220}{\sqrt{R_{\rm C}^2 + R_{\rm C}^2}} = \frac{220}{\sqrt{8^2 + 6^2}} = 22 A$$

3) Определяем значения фазных углов:

$$\cos \varphi_{A} = \frac{R_{A}}{Z_{A}} = \frac{11}{11} = 1 \qquad \sin \varphi_{A} = 0 \qquad \varphi_{A} = 0$$

$$\cos \varphi_{B} = \frac{R_{B}}{Z_{B}} = 0 \qquad \sin \varphi_{B} = \frac{X_{B}}{Z_{B}} = \frac{-10}{10} = -1 \qquad \varphi_{B} = -90^{\circ}$$

$$\cos \varphi_{C} = \frac{R_{C}}{Z_{C}} = \frac{8}{10} = 0.8 \qquad \sin \varphi_{C} = \frac{X_{C}}{Z_{C}} = \frac{6}{10} = 0.6 \qquad \varphi_{C} = 36^{\circ}50'$$

4) Активные мощности в фазах:

$$P_{\rm A} = U_{\rm A} * I_{\rm A} * \cos \varphi_{\rm A} = 220 * 20 * 1 = 4400 \, \mathrm{BT}$$

 $P_{\rm B} = U_{\rm B} * I_{\rm B} * \cos \varphi_{\rm B} = 220 * 22 * 0 = 0 \, \mathrm{BT}$
 $P_{\rm C} = U_{\rm C} * I_{\rm C} * \cos \varphi_{\rm C} = 220 * 22 * 0.8 = 3872 \, \mathrm{BT}$

5) Активная мощность всей цепи:

$$P = P_{A} + P_{C} = 4400 + 3872 = 8272 \text{ BT}$$

6) Реактивные мощности в фазах:

$$Q_{\rm A} = U_{\rm A}*I_{\rm A}*\sin\varphi_{\rm A} = 220*20*0=0$$
 вар $Q_{\rm B} = U_{\rm B}*I_{\rm B}*\sin\varphi_{\rm B} = 220*22*(-1)=-4840$ вар $Q_{\rm C} = U_{\rm C}*I_{\rm C}*\sin\varphi_{\rm C} = 220*22*0,6=2904$ вар

7) Реактивная мощность всей цепи:

$$Q = Q_{\rm B} + Q_{\rm C} = -4840 + 2904 = -1936$$
 вар

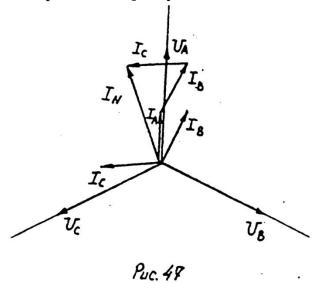
8) Полная мощность всей цепи:

$$S = \sqrt{P^2 + Q^2} = \sqrt{8272^2 + (-1936)^2} = 8510 \text{ BA}$$

9) Для построения векторной диаграммы выбираем масштаб по току и по напряжению:

$$1 \text{ cm} = 10 \text{ A}$$

$$1 \text{ cM} = 50 \text{ B}$$


Построение начинаем с векторных фаз напряжений U_A , U_B , U_C распологая их под углом 120° друг относительно друга.

Затем в принятом масштабе откладываем векторы фазных токов.

Ток I_A совпадает с напряжением U_A

Ток $I_{\rm B}$ опережает напряжение $U_{\rm B}$ на угол 90°

Ток $I_{\mathbb{C}}$ отстает от напряжения $U_{\mathbb{C}}$ на угол 36°50'

Ток в нулевом проводе равен геометрической сумме трехфазных токов

$$I_0 = I_A + I_B + I_C$$

Измеряя длину вектора тока I_0 , которая оказалась равной 4 см, находим ток:

$$I_0 = 40 \text{ A}$$

Задания по вариантам:

В трехфазную четырехпроводную сеть с линейным напряжением $U_{\rm H}$ включили звездой разные по характеру сопротивления. Определить линейные токи начертить в масштабе векторную диаграмму цепи. По векторной диаграмме определить числовое значение тока в нулевом проводе.

Таблица №5

№ варианта	№ рисунков	U_{H} , B
1,6	31	380
2,7	32	660
3,8	33	380
4,9	34	220
5,10	35	380

Определить: Активную P, реактивную Q и полную S мощности потребляемой всей цепью.

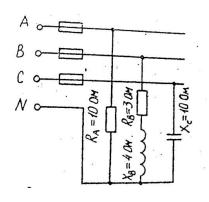


Рис. 31

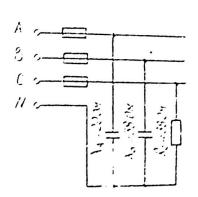


Рис. 32

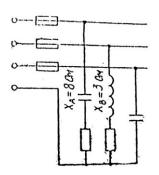


Рис. 33

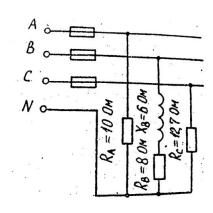
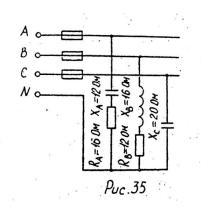



Рис. 34

II. Общие рекомендации

По всем вопросам, связанным с изучением дисциплины (включая самостоятельную работу), консультироваться с преподавателем.

III. Контроль и оценка результатов

Оценка за выполнение практической работы выставляется по пятибалльной системе и учитывается как показатель текущей успеваемости студента.

По пятибалльной системе:

	ценка индивидуальных	Критерии оценки результата
образовательных		
балл (оценка)	вербальный аналог	
5	отлично	Представленные работы высокого качества, уровень выполнения отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, выполнены все предусмотренные практической работой задания.
4	хорошо	Уровень выполнения работы отвечает всем требованиям, теоретическое содержание курса освоено полностью без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные практической работой задания выполнены, некоторые из выполненных заданий, возможно, содержат ошибки.
3	удовлетворительно	Уровень выполнения работы отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных практической работой заданий выполнено, некоторые виды заданий выполнены с ошибками.
2	не удовлетворительно	Теоретическое содержание курса освоено частично, необходимые практические навыки работы не сформированы, большинство предусмотренных практической работой заданий не выполнено.